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Abstract. Recently, it was shown that certain ‘smart’ self-avoiding trails have end-to-end
distancesR2

N ∼ N in three dimensions. Also, the corrections to scaling ofR2
N/N and the

specific heat are qualitatively very similar to those for polymers exactly at theθ point. The
question was thus posed whether they are in the same universality class as linear polymers
at the θ temperature. We show that this is not the case since these trails show a first-order
transition, instead of the second-order transition at the usualθ point. We argue that this is due
to the fact that the ‘smartness’ of these trails implies that the renormalizedn-body interactions
vanish identically for any finiten � 3. We conjecture that the qualitative similarity with recent
simulations ofθ polymers indicates that forn-body interactions the renormalized three-body
interaction is small in real polymers.

1. Introduction

Chain polymers continue to be an interesting object of study, both because of their
importance in biochemistry and because of the challenges they offer to theoretical
descriptions. In particular, theθ collapse from an open coil to a closely packed globule has
been a source of controversy and a subject of numerous studies.

In the present paper we shall deal only with theθ collapse in three dimensions, though
we should stress that some of our arguments hold for two dimensions as well. Since
the θ collapse is a tricritical phenomenon with the upper critical dimensiondc = 3, we
should expect mean-field behaviour with logarithmic corrections. These corrections have
been computed to leading order [1], and it has even been claimed that they were seen in
experiments which confirmed these predictions [2, 3].

The present work was triggered by two independent recent papers. One was a Monte
Carlo study of fairly long chains (mostlyN = 5000, but some much longer) with very high
statistics [4], where we showed that most detailed renormalization-group (RG) predictions
of corrections to the mean-field behaviour are not verified for lattice polymers. Indeed, they
are typically violated by orders of magnitude, and even one critical exponent (that which
describes theT dependence of the density inside a large globule) seems to be different from
its mean-field value. Some of our findings, such as the fact that the specific heat at theθ

point diverges much faster withN (the chain length) than theRG predictionc ∼ (ln N)3/11

were found already in previous studies [5], but it was only our study in [4] which showed
that there is a definite problem.

The other paper which motivated the present work is due to Prellberg and Owczarek [6].
They observed that some kinetically grown self-avoiding trails as well as the ‘tricolour
walk’ of [7] show obvious similarity with self-avoiding chainsexactlyat theθ point. They
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show that the end-to-end distance scales asR2
N ∼ N asymptotically, but there seem to be

corrections of the form

R2
N

N
= A − B√

N
+ · · · (1)

with B > 0. Comparison with the simulations of [4] shows that indeed those data are also
very well fitted by equation (1) withB having the same order of magnitude. In contrast,
the RG prediction [1]

R2
N

N
= A

(
1 − 37

363 lnN
+ · · ·) (2)

describes neither of these data, since the correction term is too small by about one order of
magnitude.

Similarly, the authors of [6] show that the specific heat (per monomer) scales roughly
as

c ∼ [ln N ]ζ (3)

with ζ ≈ 1–2.5 for the various models, but not withζ = 3
11 as predicted by theRG. In our

simulations in [4], we had foundζ ≈ 1.
The main interest in these kinetically grown walks is twofold: first, one knows their

θ point exactly, and secondly, they are extremely easy to simulate, much easier than self-
avoiding walks with nearest-neighbour attraction. To understand this, we have first to recall
how a self-avoiding walk (SAW) is generated on a computer. The most naive way would
be to choose a starting point, and add monomer by monomer in a random way. In order to
take into account the self-avoidance without introducing a bias, one shouldthrow awayall
configurations where this leads to a self-crossing. This leads to a roughly constant chance
that the entire chain has to be discarded when adding the next monomer, and thus to an
exponentialattrition.

For overcoming this attrition, we mention just two methods. One isenrichment[8]:
after each successful attempt of adding one or a group of monomers, we store one or
more copies of the (partially constructed) chain and try to prolongeachcopy. Carefully
controlling the copying rate, one can compensate exactly for the attrition and obtain very
long chains. Essentially a randomized and recursive implementation of this idea was used
in [4], and we shall also use it in the present paper. We shall not say more about this
algorithm, but refer to [4, 9, 10] where it is described in detail. We just point out that
it allows us to obtain (among others) grand canonical distributions where the chain length
fluctuates, its average being controlled by a constant fugacity.

The other method is the Rosenbluth–Rosenbluth (RR) method [11]. Here, one chooses
a different direction for the newly added step if the first choice would lead to a self-
crossing. Of course, this is not always possible: the walk might have run into a ‘cage’
where all neighbours are already occupied. Thus this method, in general, only reduces
attrition (often very substantially!) without being able to eliminate it completely. It would
also lead to a bias, if all generated chains were given the same weight. Let us consider a
lattice with coordination numberN . One of theN neighbours of a site is occupied by its
predecessor (unless it is the start of the chain). Ifk other neighbours are also occupied,
each of the allowed continuations gets a weight 1/(N −k −1) instead of the correct weight
1/(N −1). To compensate for this bias, each successful chain has to be weighted by a factor∏N

i=1(N − ki − 1) which gives a larger weight to stretched configurations than to denser
ones. If this factor isnot included, this would essentially simulate an attractive potential
between neighbouring monomers.
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Let us now discuss how this applies to self-avoiding trails (‘dSATs’; we shall not
consider the tricolour walk further since it is somewhat more complicated without presenting
essentially new physics). ASAT is a lattice walk where eachbond can be traversed only
once, while sites can be visited arbitrarily often. Actually, of course, each site can be visited
at mostN /2 times, since afterwards all connecting bonds have been traversed. A model
for the θ collapse is obtained if we give a Boltzmann factorq = eβε > 1 to each pair of
monomers at the same site, i.e. a factorq(m−1)m/2 for each site which is visitedm times.

Now consider theRR method for lattices whereN /2 is even. For any such lattice, we
can never run into a ‘cage’, since one bond will always be free to continue the chain. The
only exception is the starting point, and thus the only way to terminate such a chain is by
forming a loop which encompasses the entire chain. Since the probability for this to happen
(on an infinite3D lattice) is less than one, we have a finite probability (actually very close
to one for most lattices [6]) that a random chain will never form a loop and can thus be
continued arbitrarily far. Following [12], we shall call such walks ‘smart’, as they ‘know’
how to avoid traps.

Finally, let us give the same weight to all generated chains. As we said above, this
corresponds essentially to adding an attractive potential, without using anexplicit Boltzmann
factor. If N = 4, each site can be occupied by at most one pair, and this gives exactly
the same ensemble as if we generated chains without anRR bias, and with the Boltzmann
factor [6]

q = N − 1 = 3 (4)

i.e. this method simulatesSATs atβε = ln 3. ForN > 4 this is no longer exactly true, since
the RR weights are no longer exponential functions of the number of pairs [6].

The observation of [6] was that this algorithm seems to generate chains with statistics
of polymers at theθ point. Thus, this locates theθ point for a SAT on any lattice with
N = 4 at Tθ = ε/(kB ln 3).

In three dimensions, this applies, in particular, to the diamond lattice which we shall
study exclusively in the following. But we should point out that we have also checked our
results for the simple cubic lattice where the aboveRR method leads to a different model
than the standardSAT model studied for example in [13, 4].

To see whether the kinetic chains defined by these models are in the same universality
class as the usualθ collapse, we have to study them either in a finite volume or off the
(tri-)critical point. This will be done in the next section. We shall see that they are not.
Instead, they show a first-order critical point. The reason for this will be given in section 3,
and our conclusions are presented in section 4.

2. ‘Smart’ growing walks on the diamond lattice

Let us denote byCN,m the number of distinctN -step chains on the diamond lattice which
start at the origin, traverse each bond at most once, and havem doubly visited sites. The
energy of such a site is assumed to beqm with q > 1. Using a fugacityp, the grand (in
the sense of fluctuating number of monomers) canonical partition sum is

Z(p, q) =
∑
N,m

pNqmCN,m . (5)

The phase diagram for this system is sketched in figure 1. To the left of a curvep = pc(q)

we have only chains of finite length. The average chain length diverges asp → pc(q). For
p > pc(q), it would be infinite on an infinite lattice, and to render the theory finite we have
to use a large butfinite lattice.
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Figure 1. Schematic drawing of the monomer density in a finite volume filled by a single
polymer in the grand canonical ensemble governed by fugacityp and Boltzmann factorq.

Athermal polymersSATs correspond toq = 1. They should be in the same universality
class as athermalSAW. Indeed, we expect that the behaviour along the entire critical curve
is in theSAW universality class, up to theθ point 2 = (pθ , qθ ). This implies, in particular,
that the monomer density in a finite but large lattice scales forp = pc(q) + 0 as [14]

ρ ∼ (p − pc)
3ν−1 ∼ (p − pc)

0.76 (6)

as was checked for athermalSAWs in [15].
The standard assumption that theθ point is tricritical with mean-field exponents in

d = 3 implies that the monomer density increases as

ρ ∼ √
q − qθ (7)

if we pass through2 transversely to the critical linep = pc(q). The typical behaviour of
ρ(p, q) is sketched in figure 1. Simulations in [15] verified the global behaviour, showing,
in particular, thatρ → 0 for (p = pc(q), q → qθ + 0) and for(q = qθ , p → pθ + 0).

We now want to show that the latter is not true for the smart kinetic trails studied
in [6]. As shown there and discussed in the last section, the point(pθ , qθ ) for these trails
corresponds just to ensembles generated by theRR method with unit weights for all generated
chains. In figure 2 we show the chain length distributionP(n) = prob(N > n) for chains
grown on lattices of sizeL3 with periodic boundary conditions (actually, for efficient coding
we used helicalBC, but this should not make an essential difference). The chains stopped
only when forming loops. We see that this distribution scales as

P(n) = f (n/L3) (8)

showing, in particular, that the average monomer density〈N〉/L3 is finite and positive for
L → ∞. This is indeed not at all surprising, since we should expect that loops are formed
typically only after a finite fraction of the sites have been visited. Thus we see that (6)
cannot be correct for smart kinetic trails. Instead, the density makes a discontinuous jump
when passing through(pθ , qθ ) along linesq = qθ = constant.

To see that (7) also does not hold for smart kinetic trails, we have to study them off the
θ point.
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Figure 2. Chain length (∼= monomer density) distribution forSAT loops generated by theRR

method on diamond lattices of sizeL3. Notice that each site can be visited at most two times,
whence the distribution must stop at density6 2.

In order to achievep > pθ , we use the enrichment method. In order to simulate at
q 6= qθ , we could just re-weight the chains generated by the standardRR method, but we
prefer to use enrichment factors which depend on the occupation number of the next selected
site. More precisely, if we callPmx

the average number of continuations towards a sitex
with occupation numbermx (= 0,1 for the diamond lattice), then we should take

P0 = p

pθ

P1 = pq

pθqθ

(9)

(as discussed in [4], we should deviate from the grand canonical ensemble if we want to
simulate atq � qθ , by makingPm depend onN ; this was not necessary for the present
study).

Instead of using a finite lattice and running the algorithm until all chains close to form
loops, we now introduce a finite cut-offNmax, and we show in figures 3 and 4 the canonical
distributions at three different chain lengths and at different temperatures.

In figure 3 we show the distributions atT = ∞, i.e. the numbersCN,m, in a semi-
logarithmic plot. The chain lengths areN = 1250, 5000 and 20 000. Each curve combines
data from three different runs atq = qθ , q > qθ andq < qθ , each of which involved between
106–107 chains. The curves are shifted arbitrarily so that all three maxima coincide. On the
horizontal axis we plotm/

√
N , so that mean-field theory (which gives constant specific heat

per monomer) would imply that the widths of the curves are independent ofN . We see the
broadening withN which underlies the increase of the specific heat observed in [6]. But if
we look carefully, we see that the curves forN = 5000 and 20 000 seem not to be convex.

In order to see this more clearly, we computed from these data the canonical distributions
CN,mqm at roughly the temperatures where the specific heat is maximal (figure 4). We see
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Figure 3. Same data as in figure 3, but weighted with Boltzmann factorsqm. The values ofq are
different for each curve and chosen such that both maxima have the same height (respectively,
so that the top part of the curve is horizontal). They are 1.132qθ (N = 1250), 1.053qθ (N =
5000), 1.021qθ (N = 20 000).

Figure 4. Distribution of the number of doubly visited sites for fixed chain lengthN

(N = 200 00, 5000, 1250 from top to bottom) on a semi-logarithmic plot. The horizontal
axis showsm/

√
N since that is the scaling variable for free chains. The curves are arbitrarily

shifted so that their maxima coincide.
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Figure 5. Average squared end-to-end distances versusN for the same three temperatures shown
in figure 4.

indeed very clearly that this distributions has two peaks forN > 5000. The precise values of
the temperature were chosen such that both peaks have the same height. We see very clearly
that the corresponding values ofq tend towardsqθ (roughly likeq/qθ ∼ 1+constant/N0.65).
Notice that now we have plottedm/N on the horizontal axis. The fact that the peak positions
seem to be independent ofN shows that the maximumcmax of the specific heat per monomer
increases proportionally toN . It also shows that the density inside a large globule makes
a discontinuous jump at the effective transition temperature. Notice that our finding of
cmax ∼ N is not in conflict with the findingcT =Tθ

∼ (ln N)ζ of [6] since the maximum
occurs for finiteN at a temperature< Tθ .

As a final indication that the transition is of first order we show in figure 5 the average
end-to-end distance at the temperatures corresponding to the three curves shown in figure 4.
We see thatR2

N makes a very sharp drop at the effective transition temperature, indicating a
true collapse which should become discontinuous in the limitN → ∞. This is reminiscent
of the results of [4], but much more extreme.

3. Theoretical considerations

We want to show now that the smartness of the chains implies that the renormalizedn-body
forces vanish for all finiten. Thus there is no interaction which stops the collapse before a
finite density is reached, which immediately explains the results found in the last section.

Renormalization means that we look at the chain not microscopically but coarse-grained.
At the θ point, we have microscopically both attractive and repulsive interactions. In a
coarse-grained picture this means that one also has these interactions, but they arerandom
since the exact positions of the monomers are no longer controlled. Thus we can replace
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the Edwards Hamiltonian by a Hamiltonian which contains random two-body interactions,

H = 1

2

∫
dl

(
dx

dl

)2

+ 1

2

∫ ∫
dl dl′ g(l, l′) δ(x(l) − x(l′)) (10)

whereg is a Gaussian random variable with

〈g(l, l′)〉 = g2

〈g(l, l′)g(m, m′)〉 = g2
2 + g3[δ(l − m) + δ(l′ − m′) + δ(l − m′) + δ(l′ − m)] .

(11)

Performing the average overg,

eHren =
∫

Dg eH = exp

{
1

2

∫
dl

(
dx

dl

)2

+ 1

2
g2

∫ ∫
dl dl′ δ(x(l) − x(l′))

+g3

∫ ∫ ∫
dl dl′ dl′′ δ(x(l) − x(l′)) δ(x(l) − x(l′′))

}
(12)

we obtain then the usual Hamiltonian with two-body interactiong2 and three-body
interactiong3.

The important message of this derivation is that the renormalized three-body interaction
results fromfluctuationsof the basic (microscopic) two-body interaction. But we have to be
a bit more careful: actually, not only the (inner)energycan fluctuate but also the entropy.
What determines the renormalized three-body interaction should then be fluctuations of the
free energyF = E − T S.

The crucial observation now is that the free energy does not fluctuate for smart growing
walks. They are constructed precisely such that the fluctuations of the entropy (due to
the prohibition of double-bond occupancy) areexactlycancelled by the fluctuations of the
energy corresponding to theRR factors. Actually, this is true only at theθ point, and in
the limit N → ∞. For finite N , there are additional contributions to the entropy from the
probability that loops are formed, but this probability tends towards a constant forN → ∞
[6]. For SATs with RR weights on the diamond lattice, e.g., we haveF = constant+ N ln 3,
and only the additive constant fluctuates with the microscopic degrees of freedom. Thus we
should expect that the renormalized three-body interaction vanished exactly. Renormalized
n-body interactions withn > 3 would be obtained either if the fluctuations ofg are not
Gaussian or if there exists a fluctuating(n−1)-body interaction which is to be renormalized.
Since neither exist for smart growing walks, we also expect that alln-body interactions with
finite n are absent.

Notice that similar arguments should, in principle, also apply to smartSATs in two
dimensions. But for reasons which we have not yet understood, the situation there is less
clear. As shown in [16], theθ transition of self-avoiding trails on the square lattice is not
in the universality class of interactingSAWs. The latter was shown in [17] to follow the
predictions of [18]. On the other hand, the collapse of self-avoiding trails on the two-choice
square (where the walker has to make a 90◦ turn at each step),is in the latter universality
class [19]. Thus, it is not that all trails are in one universality class and allSAWs in the
other. Since2D SAWs and trails on the two-choice square lattice cannot cross themselves
while trails on the ordinary square lattice can, it was speculated in [16] that it might be this
which determines the universality class. If this is true, the Domb–Joyce model [20] with
attractive interactions between nearest neighbours should show aθ collapse which is not
in the universality class of interactingSAWs, but which follows the behaviour seen in [16].
To verify this, we have simulated the Domb–Joyce model with 56 −ε0/εnn 6 8, where
ε0 (> 0) is the energy of a monomer pair at the same site, whileεnn (< 0) is the energy
of a pair at neighbouring sites. Unfortunately, because of extremely large corrections to
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scaling we were unable to draw any definite conclusion from the runs with−ε0/εnn < 6,
though we simulated chains of length up to 104 with very high statistics. For−ε0/εnn > 6
the data seemed to agree with the standard [18]θ transition, but we are not sure that this is
not a cross-over effect since this behaviour must hold at−ε0/εnn = ∞. We might add that
we did not see any hint of a first-orderθ transition in any of the2D models we looked at.

4. Conclusions

We have shown that the three-dimensional ‘smart’ self-avoiding trails studied in [6] have
a θ collapse which isnot in the universality class of the ordinaryθ collapse. The latter is
believed to govern the collapse of real chain polymers, and is a tricritical point in the O(n)

model withn = 0. Instead, the collapse in these models is a first-order transition. We have
argued that this is due to a vanishing renormalized three-body interaction.

On the other hand, we have pointed out thatqualitativelymany features of the collapse
of smart self-avoiding trails are surprisingly similar to properties of theθ collapse of lattice
polymers. The latter were in flagrant contradiction of field-theoretic predictions based on
the assumption that corrections to mean-field theory are dominated by (renormalized) three-
body interactions.

The present findings suggest strongly that in these lattice polymers the three-body
interactions are relatively weak at presently reachable chain lengths, and thatn-body
interactions withn > 3 play a substantial role. We conjecture that this is also true for
real polymers, though analyses based on the assumption that all deviations from mean-field
behaviour are due to three-body forces have not found any inconsistencies. We propose that
these analyses should be redone, and that new experiments are needed.

Finally, we might wonder whether the first-order transition is confined to chain collapses
where the renormalized three-body interaction vanishes exactly, or whether it can also arise
if the three-body interaction is non-zero but sufficiently small. The latter should also lead to
non-convex canonical distributions for finiteN like those observed in the present work. This
might suggest that indeed a first-order transition cannot be excluded even if the three-body
interaction is not zero, but more work is needed to settle this question.
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